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Abstract: We propose a new algorithm, based on a linear regression model, 
to statistically estimate the hemodynamic activations in fNIRS data sets. 
The main concern guiding the algorithm development was the minimization 
of assumptions and approximations made on the data set for the application 
of statistical tests. Further, we propose a K-means method to cluster fNIRS 
data (i.e. channels) as activated or not activated. The methods were 
validated both on simulated and in vivo fNIRS data. A time domain (TD) 
fNIRS technique was preferred because of its high performances in 
discriminating cortical activation and superficial physiological changes. 
However, the proposed method is also applicable to continuous wave or 
frequency domain fNIRS data sets. 

©2015 Optical Society of America 

OCIS codes: (000.5490) Probability theory, stochastic processes, and statistics; (170.2655) 
Functional monitoring and imaging; (170.6920) Time-resolved imaging; (170.1470) Blood or 
tissue constituent monitoring. 
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1. Introduction 

Functional near-infrared spectroscopy (fNIRS) is an optical technique able to noninvasively 
monitor the cerebral hemodynamic at cortical level [1,2]. Exploiting the relatively low 
absorption of biological tissues, light in the red and near-infrared wavelength range can 
penetrate the human head down to some centimeters and reach the cerebral cortex. Therefore, 
fNIRS can provide a measure of oxy- and deoxy-hemoglobin (O2Hb and HHb, respectively), 
the main chromophores contributing to light absorption at this wavelength range. 

Various techniques are proposed in literature to enhance and detect the fNIRS signal, 
irrespective of the specific hardware implementation (e.g. continuous wave, frequency 
domain, or time domain regime) of the fNIRS technique. However, because of the relative 
novelty of the fNIRS technique, a common accepted framework for data analysis has not yet 
been agreed. The first public domain software package for fNIRS data analysis is Homer 
(acronym for Hemodynamic Evoked Response) [3]. The software provides a graphical user 
interface and Matlab scripts for both the preprocessing and the standard statistics on fNIRS 
data. Homer has been upgraded and the new release Homer2 supports more easily group 
analyses and re-configuration of the processing stream, and it integrates users algorithms into 
the processing stream. Another free software is functional Optical Signal Analysis (fOSA) 
[4], which offers Matlab based functions for a basic analysis of fNIRS data, incorporating 
several filters for signal denoising and providing also the Statistical Parametric Mapping 
(SPM) methodology for statistical analysis based on the general linear model (GLM) 
approach. More focused on the development of SPM routines is the non-commercial software 
NIRS-SPM [5]. A novelty introduced by this program is represented by a voxel based 
alignment between interpolated maps instead of an inter-subjects realignment of optodes, in 
order to facilitate the group analysis. Further it proposes a new theory to deal with the 
multiple comparison problem for the p-value correction [6]. Another software is NIRS 
analysis package (NAP) [7], which allows noise removal and GLM analysis, as well as 
anatomical registration of the measurements. fNIRSOFT is a stand-alone software to process, 
analyse and visualize fNIRS signals through a graphical user interface and/or scripts 
distributed by BIOPAC Systems, Inc [8]. Finally POTATo (Platform for Optical Topography 
Analysis Tools) is a software package for fNIRS signal processing and analysis, developed by 
Hitachi, Ltd [9]. A comprehensive list of software can be found in the website of the fNIRS 
Society [10]. 

The above mentioned tools share some common procedures for preprocessing the fNIRS 
data and for extracting the features of interest. Given that the functional studies are usually 
performed by repeating a particular task during several temporal slots, a preliminary way to 
inspect the fNIRS results is to detrend the signal by subtracting a mean value registered in a 
rest period before each task repetition and then to visualize the time series of O2Hb and HHb 
signals as the average over all the trials. The expected hemodynamic response is identified 
where the O2Hb concentration increases and simultaneously the HHb decreases. Often the 
functional activity could be not easily detected because of the simultaneous presence of 
confounding effects like hemodynamic changes in the superficial layer (either systemic or 
task related), and movement artefacts. Therefore a careful data analysis and statistical 
inference must be considered to properly detect the signals related to a neuronal activation 
[11–13]. Several methods to correct fNIRS signals are proposed and they are based on 
bandpass filtering or on data decomposition by means of principal component analysis (PCA) 
or independent component analysis (ICA) [14,15]. Another approach in GLM analysis is 
measuring and explicitly modelling the physiological confounds, inserting them as nuisance 
regressors [16]. 
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For statistical inference, the GLM approach has been adopted in most of the fNIRS 
software tools. GLM is a regression model assuming that a functional of a given signal can be 
modeled as a linear combination of known regressors, usually consisting in task-related 
boxcar functions. GLM was originally adopted for fMRI data analysis [17], and later used in 
fNIRS, taking advantage of the similarity between fMRI and fNIRS experiments in terms of 
design and hypotheses [4,18]. Anyway, because of the substantial differences between fMRI 
and fNIRS techniques, above all the lower fNIRS spatial resolution due to the sparse optodes 
distribution over the head, there are a number of limitations, assumptions and specific issues 
that have to be considered when applying GLM on optical data [19]. 

In this paper we propose a new statistical method for the fNIRS data analysis to 
statistically discriminate the hemodynamic activations. The proposed method is based on a 
linear regression model, and the main concern guiding the algorithm development was the 
minimization of assumptions and approximations made on the data sets for the application of 
statistical tests, such as the assumptions of independence, homoscedasticity and Gaussianity 
of residuals in order to guarantee the Gaussianity of the coefficients estimators. Furthermore, 
we propose a clustering algorithm aiming at a better localization of the activated vs. not 
activated channels. The method has been tested on simulated data mimicking real fNIRS 
measurements, and then applied on in-vivo measurements. In particular, we focused on time 
domain (TD) fNIRS data since this technique allows the best discrimination between cortical 
activation and superficial physiological changes. However, the proposed method is also 
suitable for continuous wave or frequency-domain fNIRS data sets. 

2. Materials and methods 

2.1 Synthetic fNIRS data 

A synthetic fNIRS data set has been created to mimic real multichannel TD fNIRS 
measurements on a healthy adult during a motor task (handgrip experiment). A forward 
procedure and an inverse procedure were the main steps to obtain the synthetic data set. 

The forward procedure consists in: 1) defining the head geometry; 2) assigning values for 
the hemodynamic parameters so as to calculate the hemodynamic response functions during a 
protocol; 3) converting hemodynamic parameters into absorption coefficients; 4) adding the 
information on the reduced scattering coefficients; 5) using a photon diffusion model to 
generate distributions of photons time-of-flight; 6) adding measurement noise to mimic a real 
TD fNIRS measurement. 

The head has been modeled as a bilayered medium, where the upper layer is 1 cm thick, 
and the lower layer is ideally a semi-infinite medium. To a first approximation in fact this 
geometry can be used to simulate fNIRS measurements on the adult head, where an extra-
cerebral layer (composed by scalp, skull and cerebrospinal fluid) overlays the intra-cerebral 
one (gray and white matter). The thickness of the upper layer presents a wide range of values 
depending on subjects and on the measurement position (skin-cortex distance spanning from 
7.25 to 20 mm) [20]. However a recent study proposed by Strangman et al. [21] provides 
tabulated values of the scalp and skull thicknesses for all the positions of the 10/20 EEG 
standard system, based on the segmentation of the MRI-based head model “Colin27” [22]. In 
the areas related to our experiment the reported thickness values together with a mean 
thickness value of the cerebrospinal fluid [20] confirm the choice of 1cm as average distance 
between scalp and brain cortex. 

Hemoglobin concentrations were simulated by considering reference values of 12 μM for 
the O2Hb and 7 μM for the HHb in the superficial layer, and reference values of 30 μM for 
the O2Hb and 20 μM for the HHb in the lower layer [23]. A data set for 30 independent 
channels was generated, considering an optodes distribution over both central hemispheres 
(see Fig. 1). 

Two different experiments were then simulated. 
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Fig. 1. Sources (red circles) and detectors (green circles) according to the 10/20 International 
System positions. The position of the 30 simulated measurement channels (purple diamonds) is 
also highlighted. 

The first experiment (EXP1) considers an ideal situation where a neuronal activation is 
generated in the cortical layer by a motor task, and no physiological oscillations occur in the 
superficial layer. This experiment consists of 10 repetitions (also called trials) of 10 s of 
baseline, 20 s of right handgrip movement and 10 s of recovery, for an overall experiment 
duration of 400 s. The O2Hb and HHb concentrations in the upper layer were simulated 
constant at the reference values during the whole experiment, while the concentrations in the 
lower layer were perturbed in some channels so as to mimic a hemodynamic response in 
correspondence to the task periods. This superimposed response profile was calculated as a 
convolution of a boxcar function, representing the task and rest alternation, with the 
Hemodynamic Response Function (HRF) evoked by a single stimulus. By following the 
method proposed by Scarpa et al. [24], the HRF was modeled as a linear combination of two 
different gamma-variant time-dependent functions Γn: 

 ( ) ( ) ( )1 1 2 2Γ , , Γ , ,n nHRF t t tα τ ρ β τ ρ= × − ×    (1) 
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where α regulates the amplitude, τ1 and τ2 regulate the HRF shape, ρ1 and ρ2 tune its scale, 
while β determinates the undershoot. p coefficient was set to 5 as suggested by Glover et al. 
[25]. Variability in amplitude of about 5% was considered among the different repetitions to 
account for possible differences in the execution of the task and/or in the functional response 
(e.g. habituation effects). The HRF peak for the O2Hb was chosen to be around 1555 ± 75 
nM; the HRF for the HHb was inverted and with a maximum set at −1/3 with respect to the 
O2Hb response. The free parameters have been chosen so as to create a HRF similar to the 
one expected for the motor task of interest (α = 1282, β = 0.17, τ1 = 1, τ2 = 1, ρ1 = −0.5, ρ2 = 
3.5). To simulate an actual neuronal activation localized around the central positions of the 
hemisphere contralateral to the movement, some channels were considered activated with 
different intensities: number 16 (25% HRF), 17 (100% HRF), 18 (50% HRF), 21 (50% HRF), 
28 (25% HRF), 29 (50% HRF); in the other channels no hemodynamic response was added. 

In a second experiment (EXP2) the reference values for both layers and for the 
hemodynamic changes happening in the lower layer were identical to EXP1. However a 
physiological noise was added in the superficial layer by following the procedure reported by 
Scarpa et al. [24]. An oscillation was built for O2Hb signal for one channel as a superposition 
of sinusoidal functions at different mean frequencies and amplitudes, as reported in Table 1: 
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Amplitudes iA and frequencies fi vary in the channel for every repetition in the range 

described in Table 1, while phases iφ  are equally distributed between 0 and 2π and are 

different for each trial. 

Table 1. Frequency and amplitude (mean ± standard deviation) of physiological 
componentsa 

 Frequency (Hz) Amplitude (nM) 

Very low freq. f1 = 0.002 ± 0.0001 A1 = 700 ± 100 
Low freq. f2 = 0.01 ± 0.001 A2 = 700 ± 100 
Vasomotor 
Respiratory 

f3 = 0.07 ± 0.04 
f4 = 0.2 ± 0.03 

A3 = 400 ± 10 
A4 = 200 ± 10 

Cardiac f5 = 1.1 ± 0.1 A5 = 400 ± 10 
aFrom Scarpa et al. Neuroimage 72, 106-119 (2013). 

The generated signal was then replicated for all the channels by modifying the oscillation 
amplitude of a random value between ± 10%. The HHb variations have been generated by 
threefold reducing the magnitude of the physiological noise simulated for the O2Hb. 

The absorption coefficients at two wavelengths (690 and 820 nm) for both layers were 
computed from these hemoglobin concentration changes by exploiting the Lambert Beer law 
and the a priori knowledge of the specific O2Hb and HHb absorption [26]. 

The scattering coefficients at the same wavelengths were derived from a simple 
approximation of the Mie theory [27]: 

 ( )'

0

b

s a
λμ λ
λ

−
 

=  
 

 (4) 

by fixing the scattering amplitude a and the power b respectively at 12 cm−1 and 0.5 for the 
upper layer, and at 12 cm−1 and 1 for the lower layer, for a reference λ0 at 660 nm [28]. A 
forward model for photon diffusion in a bilayered geometry [29] was used to generate 
synthetic time-resolved reflectance (TRR) curves for each channel by using as input 
parameters the optical properties and the source detector distance (fixed at 3 cm). A count rate 
of 5·105 ph/s was considered, the integration time was set at 1 s, and Poisson noise was added 
to the simulated curves to mimic real measurements. 

The inverse procedure involved the following steps: 1) estimating the baseline optical 
properties and the absorption changes in the upper and lower layer; 2) calculating the 
hemodynamic parameters from the absorption coefficients. 

The absolute values of μa and μs’ have been recovered by TD fNIRS data by fitting the 
curves of the baseline period preceding each task with a physical model for reflectance 
geometry in a homogeneous medium [29]. Then absorption changes have been computed by 
means of the method proposed by Zucchelli et al. [30]. The method allows the discrimination 
of superficial and deep absorption variations from TRR curves. It takes into account the effect 
of system set-up, as described by the Instrument Response Function (IRF) and the 
heterogeneous structure of the human head for the refined computation of the photon time-
dependent pathlengths within each layer the tissue is composed of. It makes use of an 
approach based on time-gating of the photon time-of-flights distribution. The fNIRS signal 
coming from the deep regions, more likely involved in the cerebral activity, can be corrected 
from the superficial variations of the absorption properties, mainly due to systemic 
hemodynamics changes. Figures 2 and 3 show the time courses (folding average) for changes 
in O2Hb and HHb for the EXP2 in the upper layer and in the lower layer, respectively. 
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Fig. 2. Folding average of simulated O2Hb (red) and HHb (blue) for the upper layer (EXP2). 
Dashed vertical bars represent the duration of the task period. 

Time (s)

-1

0

3

CP5 CP3 CP1

C5 C3 C1

FC5 FC3 FC1

Cz

CP2 CP4 CP6

C2 C4 C6

FC2 FC4 FC6

100 30 40Δ
C

o
nc

 (
uM

)

 

Fig. 3. Folding average of simulated O2Hb (red) and HHb (blue) for the lower layer (EXP2). 
Dashed vertical bars represent the duration of the task period. 

2.2 In vivo fNIRS data 

The proposed method has been applied on in vivo data, acquired by a multi-channel dual-
wavelength TD fNIRS medical device developed at Politecnico di Milano, Department of 
Physics [31], to preliminary validate its performances in real life settings. 

One right-handed healthy subject (male, 44 years old) underwent the experiment, 
consisting in a motor task (i.e. squeezing a soft ball in the right hand) at a rate of 2 Hz guided 
by a metronome. The same protocol simulated for synthetic data was maintained for in vivo 
experiment (10 repetitions of 10 s baseline, 20 s task and 10 s recovery, total duration 400 s). 
Instructions about the movement and rest were given by presenting a picture on a screen, 
which always had a fixation cross in the center. A total of fifteen detection bundles and eight 
light sources were positioned over the sensorimotor areas centered on C3 and C4 positions of 
the 10/20 standard system, following the configuration represented in Fig. 1. Pairs of light 
sources were sequentially illuminated in the left and right hemisphere every 0.25 s allowing 
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the acquisition of 30 measurement points (channels) with an overall acquisition time of 1 s. 
Hemodynamic parameters were estimated by following the same steps previously described 
as “inverse procedure”. 
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Fig. 4. Folding average of O2Hb (red) and HHb (blue) for the upper layer from in vivo data. 
Dashed vertical bars represent the duration of the task period. 
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Fig. 5. Folding average of O2Hb (red) and HHb (blue) for the lower layer from in vivo data. 
Dashed vertical bars represent the duration of the task period. 

The experiment was part of another study [32] that was reviewed and approved by the 
local ethics committee and it was conducted in compliance with the Declaration of Helsinki; 
the subject signed a written informed consent to their participation in the study. 

Folding average results for changes in O2Hb and HHb in the superficial and lower layer 
are shown in Figs. 4 and 5 respectively. 

2.3 Statistical analysis 

The proposed regression model consists in the following steps: 1) pre-processing; 2) estimate 
of the regressors coefficients for each trial; 3) inference test on the coefficients; 4) K-means 
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algorithm for cluster analysis of activated channels. The method has been implemented in R 
Core Team (2014) [33], on a standard computer (Intel Core i5, 6GB RAM). 

A pre-processing algorithm is initially applied to the fNIRS data sets. The sample mean, 
calculated on the first 10 s of each trial, is subtracted to the related trial, in order to detrend 
data. Then a smoothing spline algorithm is applied to the whole signal. If ty  is hemoglobin 

concentration at time 1: 400t = s, the algorithm calculates the curve ( )ŷ t  that minimize (in 

the class of twice differentiable functions) the following quantity: 

 ( )( ) ( )( )
400400 22 ''

1 1

1
  .

40
ˆ ˆ

0 t
t

y y t y t dtξ
=

− +   (5) 

The first term represents the estimated Mean Squared Error (MSE) when using ( )ŷ t  to 

estimate ty . The second term penalizes the curvature of ( )ŷ t . The parameter ξ  controls the 

trade-off between the accuracy of ( )ŷ t  (for ξ  = 0 it corresponds to the original data) and 

how it is smoothed. Thus data are estimated through the smoothing spline ( )ŷ t  that 

minimizes a weighted sum of MSE and the average curvature. 
Instead of using all the 400 s for a single linear regression model, we divide the time 

series of each channel in 10 sub-intervals (i.e. repetitions or trials) lasting 40 s (made of 10 s 
rest, 20 s task, and 10 s rest). We then individually apply a linear regression model to each 
repetition. 

Each trial is the elementary sequence revealing activation. It represents a realization of the 
same phenomenon. It can therefore be interesting to first analyse each trial independently, 
writing a regression model for each of them. Then we look for an appropriate quantity that 
summarizes the information about activation in each sub-interval. We consequently have a 
sample of size 10 of these quantities for each channel, on which we can make inference. This 
approach aims at limiting the most critical problems that are found in analysing fNIRS data 
through a linear (or a generalized linear) regression model: correlation, heteroscedasticity and 
not Gaussianity of residuals, that question the Gaussianity of the coefficients estimates. 

If i indicates the sub-interval and k indicates the channel, we build for each channel 
1: 30k =  the 10 following linear regression models: 

 , ,   ,      1 , 2, 1 0,i k k i ky X iβ ε= + = …  (6) 

where ,  i ky  is the vector of data, X is the design matrix, kβ the vector of coefficients and ,i kε  

a term of error. They are defined as follows: 
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Under the hypothesis that O2Hb increases during the task period, the regressors for O2Hb, 
rest and task, are obtained through a convolution between the HRF and a step-function equal 
to 0 in the first and last 10 s and 1 elsewhere for task (the opposite for rest) (see Fig. 6 left). 
On the contrary, given that HHb is expected to decrease during the task, the regressor for 
HHb is built as a convolution between the HRF and a step-function equal to 0 in the first and 
last 10 s, −1 elsewhere for task, the opposite for rest (see Fig. 6 right). 
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For each channel k and sub-interval i, we then calculate the Ordinary Least Squares 
estimators for kβ , as: 

 ( ) 1, ,  ˆ .i k T T i kX X X yβ
−

=  (7) 

Following this procedure we obtain fitted values ,ˆ .i ky  more similar to , .i ky  than the ones 

found through a single linear regression model. An example is reported in Fig. 7, where fitted 
values and real data are plotted for regression models on trials (Fig. 7 left) and for a unique 
regression model (Fig. 7 right). In the first situation the Squared Error (SE) is lower than in 
the second one (34.1 and 42.4 μM2 respectively), in which the obtained coefficients are the 
same for all trials, preventing any variability. For this reason the approach with regression 
models on trials well suits also experiments where the intensity of the HRF varies in time. 

 

Fig. 6. Regressors for O2Hb (left) and HHb (right) concentrations. 

Moreover, through this approach, we have a population of k
restβ  and k

taskβ  for each channel 

k on which we can make inference test. The Gaussianity of ,ˆ i k
restβ  and ,ˆ i k

taskβ  is first 

investigated, as well as the Gaussianity of the linear combination , ,ˆ ˆi k i k
task restβ β− , through running, 

on each channel k, three Shapiro-Wilk tests (one on the ten-observations 

sample ( )1, 2, 10, , , , ˆ ˆ ˆk k k
rest rest restβ β β… , one on ( )1, 2, 10, , , , ˆ ˆ ˆk k k

task task taskβ β β… , one on their linear combination). P-

values are almost always higher than 0.05 in every data set, both simulated and in vivo, with 
O2Hb and HHb measures. An example is reported in Fig. 8. We can therefore assume that, for 

each fixed channel k, ,ˆ i k
restβ  belongs to a normal distribution, as well as ,ˆ i k

taskβ  and , ,ˆ ˆi k i k
task restβ β− . 

In order to discriminate between activated/not-activated channels we focus on the contrast of 

the coefficients, , ,ˆ ˆi k i k
task restβ β− , coherently with the current literature [17]. 

 

Fig. 7. Comparison between O2Hb fitted values and real data (channel 18, EXP1) from 
regression models on sub-intervals (left) and from a unique regression model on all the 400 
measurements (right). 

#228307 - $15.00 USD Received 24 Nov 2014; revised 17 Jan 2015; accepted 22 Jan 2015; published 28 Jan 2015 
(C) 2015 OSA 1 Feb 2015 | Vol. 6, No. 2 | DOI:10.1364/BOE.6.000615 | BIOMEDICAL OPTICS EXPRESS 624 



 

Fig. 8. P-values of Gaussianity for 
,ˆ i k

restβ  (a), 
,ˆ i k

taskβ  (b) and
, ,ˆ ˆi k i k

task restβ β−  (c) (lower layer, 

EXP1, O2Hb). 

We use the 10 found linear combinations , ,ˆ ˆi k i k
task restβ β−  and their Gaussianity to implement 

an inference test. We then build a map that shows the degree of activation of each channel. 

We conduct a hypothesis test for each channel k on the expected value of , ,ˆ ˆi k i k
task restβ β−  and we 

use the P-values to draw the map. 
In particular, for fixed channel k, the test will be: 

 0
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where ˆ ˆk k k
task restEμ β β = −   is the expected value of the linear combination of the 

coefficients. A one-tailed test is chosen due to the shape of the regressors and the HRF. 
Theoretically the decision of the test would be the acceptance of the null hypothesis for 

the not-activated channels, and the rejection for the activated ones. In fact if a channel is 
activated we expect that the linear combination of the regressors is significant, and the 
coefficients related to it have expected value higher than 0. Due to the Gaussianity of 

, ,ˆ ˆi k i k
task restβ β−  we can calculate for every test the following test statistic: 
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0
.

/10

k
n

k

k

X
T

S

−
=  (8) 

Under the null hypothesis it is distributed as a t-student with 1n −  degrees of freedom. 

Here the sample size, n , is equal to 10, k
nX  is the sample mean of , ,ˆ ˆi k i k

task restβ β− , and 2
kS  is the 

sample variance. A P-value for each channel can be calculated as ( )kP X T> , where X  is a 

random variable from a t-student distribution with 1n −  degrees of freedom. We finally plot a 
map (named activation map, see Figs. 9 and following) in which the color of each channel is 
proportional to its P-value. Colors vary from white (activation) to black (no activation). 

2.4 K-means clustering algorithm 

The localization of an activated area through a statistical analysis can be confirmed through 
K-means clustering algorithm [34]. If k indicates the channel and i the trial, the following 
vector is considered for each channel: 
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A K-means algorithm is applied to the 30 vectors in 10 . This clustering algorithm 
separates the 30 vectors in m  groups, finding clusters that minimize the Euclidean distance 
within clusters and maximizes the one between clusters. We set m  equal to 2, because we 
expect to observe two clusters: one with activated channels, one with not-activated ones. 

The algorithm consists of 3 steps: 

1. Initialization, in which the initial centers are randomly fixed. 

2. The Euclidean distances from m centers are calculated for each vector, then vectors 
are assigned to the cluster with the nearest center. 

3. Updating of centers: the center of each cluster is calculated as the mean between the 
vectors belonging to the cluster. 

Steps 2) and 3) are repeated until convergence. 
The choice of   2m=  is confirmed also by the average silhouette width, a quality index 

allowing to select the number of clusters [35]. For each fixed m , the index varies from –1 to 
1, increasing if the algorithm well classifies the vectors, decreasing if they are badly 
classified. An index is calculated for K-means with different number of clusters. Then K-
means with the highest average silhouette width is chosen. If  2m= the index is equal to 0.85 
for O2Hb, while for 2  7m< <  we obtain indices lower than 0.40. Similar results are obtained 
for EXP2. This confirms our choice. 

Finally we observe that the K-means algorithm is robust with respect to the initialization 
value, as reported by Hartigan et al. [34]. Specifically, in step 1) we initialize our analysis 
from channel 14 and 21, being in the center of the measured areas, without loss of robustness. 

3. Results 

3.1 Synthetic fNIRS data 

Activation maps for O2Hb and HHb are reported in Fig. 9 for EXP1 and in Fig. 10 for EXP2. 
For data set EXP1 it is clear how the proposed method can discriminate the activated 

channels in the deeper region. P-values related to activated channels are in fact close to 0 
(equal to 0 rounding to the third decimal place), creating a sharp division in the map between 
white and colored channels. At first sight, channel 30 might seem activated. Its P-value (P = 
0.004) is however bigger (by more than a factor 10) than the highest activated-channel P-
value (P = 0.0003 for channel 28). 

If we consider as activated a channel with P-value lower than 0.001, we note that the map 
can discriminate exactly the activated channels. More specifically, the lowest P-value (less 
than 10−7) is the one referred to channel 17, the most activated one (100% HRF), while 
channels with the lowest activation intensity (ch. 16 and 28, 25% HRF) have the highest P-
values among the activated ones (less than 0.0005). 

Also in the activation map for the deeper layer of data set EXP2 activated channels are 
instantly detectable. In the superficial layer P-values are very high (higher than 0.5) and very 
uniform, confirming that the simulated O2Hb is noise. 
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We can notice in the HHb activation maps the same trends found for O2Hb. Revealing an 
activation in this situation is more difficult, because activation amplitude is lower than in 
O2Hb measures. Nevertheless, this method performs a good channels classification on these 
measures too: the only channel with a slightly high P-value is 28 (25% HRF). 

 

Fig. 9. Statistical detection of channels activation for O2Hb (left column) and HHb (right 
column) in the upper layer (top row) and lower layer (bottom row) for EXP1. The numbers 
inside the circles are the channel numbers while the numbers outside the circles are the P-
values. Channels simulated as active are circled in green. 

 

Fig. 10. Statistical detection of channels’ activation for O2Hb (left column) and HHb (right 
column) in the upper layer (top row) and lower layer (bottom row) for EXP2. The numbers 
inside the circles are the channel numbers while the numbers outside the circles are the P-
values. Channels simulated as active are circled in green. 

3.2 In vivo data 

The method proposed for activated channels detection was tested also on in vivo data. In vivo 
data set was treated in the same way as the synthetic ones. Coefficients estimates were then 
tested in order to evaluate the dependence between data and regressors. Activation maps were 
calculated in the same way. This procedure produced good results on in vivo data, and it 
proved to be suitable in revealing activated channels. Activation maps for in vivo subject are 
reported in Fig. 11. In the superficial layer the subject shows high P-values in most of the 
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channels, while active areas can be clearly identified in the left hemisphere of deep layer. 
This proves the efficacy of the proposed procedure for activation detection, that can be 
successfully applied also on in vivo data. 

 

Fig. 11. Statistical detection of channels’ activation for O2Hb (left column) and HHb (right 
column) in the superficial layer (top row) and lower layer (bottom row) for in vivo data. The 
numbers inside the circles are the channel numbers while the numbers outside the circles are 
the P-values. 

3.3 K-means 

K-means activation maps for synthetic data are reported in Fig. 12 for EXP1 and EXP2. In 
these images channels from different clusters are represented with different colors. Channels 
simulated as active (in deep layer) are circled by green. 

The K-means algorithm is able to identify most of the activated channels for both O2Hb 
and HHb in the deep layer. The channels that present higher activation intensity (channels 17, 
18, 21, 29) are precisely clustered, for both EXP1 and EXP2. Conversely, channels 16 and 28, 
that present a low intensity of activation (25% HRF), are assigned to the not-activated cluster. 
If there is no activation, as happens in the upper layer, the algorithm is not suitable. In fact it 
is forced to separate channels in two groups, even if vectors shouldn’t be divided in two 
clusters. Thus results are unpredictable. 

(a) (b)
 

Fig. 12. K-means maps for O2Hb (left column) and HHb (right column) in the superficial layer 
(top row) and lower layer (bottom row) for EXP1 (a) and EXP2 (b). Channels simulated as 
active are circled in green. The numbers inside the circles are the channel numbers while 
colors identify the two clusters. 

Figure 13 shows K-means maps for the in vivo subject. The algorithm performs a 
classification coherent with the activation maps, always assigning the activated channels to 
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the same cluster. We recall that a channel is considered as registering activation in the low 
layer only if there is a simultaneous increase of oxyhemoglobin and decrease of 
deoxyhemoglobin. In some situations, if there are one or more highly noisy channels, the 
algorithm separates them from the others. Thus highly noisy channels must be excluded from 
the K-means analysis, to avoid clusters composed only by one or two anomalous channels. 
Excluded channels are reported in pink (their irregularity can be verified looking at folded 
averages in Figs. 4 and 5). 

 

Fig. 13. K-means maps for O2Hb (left column) and HHb (right column) in the superficial layer 
(top row) and lower layer (bottom row) for the in vivo subject. The numbers inside the circles 
are the channel numbers while colors identify the two clusters. Noisy channels are in pink. 

4. Discussion 

In this paper a new method for analysis of fNIRS data has been introduced. It is based on 
linear regression models using, as regressors, convolutions between scale functions and HRF, 
as in current literature. The main novelty is the data splitting in trial or sub-intervals, each one 
representing a realization of the elementary activation sequence, and the application of a 
linear regression model on each of them. In this way, an investigable sample of coefficients is 
obtained for each channel. In agreement with the literature we specifically focused on a linear 
combination of the coefficients. We verified the Gaussianity of the linear combinations 
through Shapiro-Wilks tests. Thus, rather than a unique linear combination for each channel, 
that is difficult to analyse because of heteroscedasticity, not-normality and correlation of 
residuals, we have a normal population of linear combinations for each channel, which can be 
easily investigated through an inference test. For each channel a one-tailed hypothesis test on 
the expected values of the linear combinations is built, expecting a rejection (acceptance) of 
the null hypothesis for activated (not-activated) channels. The related P-values are used to 
draw the activation maps. A further novelty is the use of a clustering algorithm (K-means) as 
a useful additional instrument in activation detection. K-means algorithm separates channels 
in two sharp groups: the information on the activation degree of each channel is then lost. The 
output of the algorithm is a binary assignment for each channel, that is simply labelled as 
“active/not-active”. Thus it can happen that low activated channels are assigned to the cluster 
of not-activated ones. This happens for example for channels 16 and 28 in Fig. 12, that 
present a low intensity of activation (25% HRF). The channels that present a higher activation 
intensity (channels 17, 18, 21, 29) are precisely clustered, for both EXP1 and EXP2, O2Hb 
and HHb measures. The clustering algorithm can be an important instrument of control: its 
right clustering is a further confirmation of the accuracy of the previous analysis and of the 
calculated activation maps. In fact it follows a different procedure compared to the linear 
regression model. It aims to detect the same channels applying another kind of analysis, that 
doesn’t use statistical tests and is based on different hypothesis. The clustering algorithm 
works well if there are channels with “similar” vectors (thus with a similar evolution in time. 
This is expected to happen with activated channels). If there is no activation the algorithm is 
forced to separate channels in two groups, thus results are unpredictable and with no sense. 
Some problems can also arise if one (or more) channels are particularly noisy and product 
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very heterogeneous vectors: in this situation the K-means algorithm can be inaccurate, 
separating noisy channels from the others. For this reason highly noisy channels should be 
excluded before an analysis with K-means clustering algorithm. 

A limitation of this study could be the accuracy of the simulated data set. We should in 
fact observe that the creation of synthetic data well reproducing the superficial and deep 
O2Hb and HHb concentration changes happening during a succession of rest and task periods 
is not a trivial issue. As a matter of fact the actual magnitude and frequency components of 
O2Hb and HHb physiological oscillations occurring concurrently within the s and in the 
cerebral cortex, during rest or task periods, is never fully reported in literature with adequate 
precision. Often they are presented only for a range of frequencies, for partial regions of the 
head, or for physiological parameters different than hemoglobin species (blood flow, pressure 
or volume components) [36–38]. Moreover, the quantitative definition of the amplitude 
variation within the brain of both species of hemoglobin following a neuronal activation, i.e. 
the hemodynamic response, is still an open issue in the scientific community. In fact reported 
fNIRS data present inaccuracies related to different factors: for instance most of the retrieved 
concentration values are obtained with CW fNIRS instruments, and thus present an intrinsic 
measurement error due to the poor depth resolution of the technique: the obtained cerebral 
signal is inevitably affected by extracerebral concentration variations [39–41]. Further, the in 
vivo optical (absorption and scattering) properties of biological tissues are hardly measurable 
and data in literature present a high variability in the results [42]. Finally, the different 
anatomical characteristics within and between subjects produce unavoidable analysis errors. 
Despite all these limitations the simulated data sets presented in this paper can be effectively 
used to test the performances of data analysis procedures. Finally, it is worthwhile to observe 
that the presented work does not aim at solving the specific issue of superficial systemic 
contamination in fNIRS signal. Rather it is focused on the description and validation of a 
statistically correct method to identify activated channels. For the method’s application, the 
input data are supposed to be previously corrected from the superficial contribution: 
specifically in our case we have taken advantage of TD fNIRS and of simple detrending as 
pre-processing tool. A future development could include the choice of other filters or 
algorithms for preprocessing analysis, and a more flexible arrangement of the regressors in 
the GLM. A family wise correction method for the p-value thresholding could be studied and 
implemented to account for the spatial coherence of fNIRS data. 

5. Conclusion 

The present study proposes a new procedure for the statistical analysis of the activated 
channels in fNIRS data. The introduced method minimizes the hypothesis made on data for 
the application of statistical tests. Thus it can be employed on a wide class of data sets, 
without losing validity even if high correlation and heteroscedasticity of residuals are proved 
or their Gaussianity is not verified. All these assumptions are relaxed through a model that 
provides a sample of activation-related quantities for each channel. The unique required 
hypothesis is Gaussianity of the activation-related quantities, and this hypothesis was always 
confirmed by statistical tests. This procedure was validated on a synthetic data set and then on 
in vivo data from TD fNIRS, and it produced good results in both situations, detecting 
activated channels with precision. A clustering algorithm (K-means) is also proposed in the 
present study as a useful additional tool for activated channels detection. This clustering 
algorithm doesn’t require any statistical hypothesis. It divides channels in two groups trough 
geometric considerations on activation-related quantities of each channel. Because of the 
different proceedings compared to the previous algorithm, K-means can be used as a 
reinforcing control instrument after the proposed method execution. To our knowledge the 
proposed method can complement the procedures contained in the most used software for 
fNIRS data analysis (e.g Homer2 and NIRS-SPM). However, a thorough comparison of the 
outcomes of different software tools is out of the scope of this paper. 
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